Incompressible Grassmannians of Isotropic Subspaces

نویسنده

  • NIKITA A. KARPENKO
چکیده

We study 2-incompressible Grassmannians of isotropic subspaces of a quadratic form, of a hermitian form over a quadratic extension of the base field, and of a hermitian form over a quaternion algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incompressibility of Products by Grassmannians of Isotropic Subspaces

We prove that the product of an arbitrary projective homogeneous variety Y by an orthogonal, symplectic, or unitary Grassmannian X is 2-incompressible if and only if the varieties XF (Y ) and YF (X) are so. Some new properties of incompressible Grassmannians are established on the way.

متن کامل

Unitary Grassmannians

We study projective homogeneous varieties under an action of a projective unitary group (of outer type). We are especially interested in the case of (unitary) grassmannians of totally isotropic subspaces of a hermitian form over a field, the main result saying that these grassmannians are 2-incompressible if the hermitian form is generic. Applications to orthogonal grassmannians are provided.

متن کامل

Exceptional Collections for Grassmannians of Isotropic Lines

We construct a full exceptional collection of vector bundles in the derived category of coherent sheaves on the Grassmannian of isotropic two-dimensional subspaces in a symplectic vector space of dimension 2n for all n.

متن کامل

Quantum Pieri Rules for Isotropic Grassmannians

We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert clas...

متن کامل

Pieri-type Formulas for Maximal Isotropic Grassmannians via Triple Intersections

We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an exact description of the intersection of two Schubert varieties, from which the multiplicities (which are powers o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016